Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

GROUP | FUNCTIONS.

DATA STRUCTURES & GLOBAL/DEFAULT
BEHAVIOUR

Main scope should be standard automation of CNC traceability processes and
data, independently of CNC architecture...

1. Options for logging data:

Three major options for logging data:

1. NC-Functions simply “standardize” the traceability automation -
indicate traceability requirements, so log files are non standard. These seems
not to be adequate...

— - AP-238
(traceability_nc_function)—r nc_functions

Shop-floor Automation of -
=

Traceability Requirements 1 [

no standard
CNC structure
data logs ?

1. no connection with APZ38
2. difficult to use in the future

3. CNC (post-processzor) dependant

2. NC-Functions standardize the automation process
(requirements) and also the data format (structure) of traceability logs.
With this approach there are two alternatives.

Option B.
Logs in Separate Files linked with AP-233 file.
Traceability_nc_functions are linked
with TEMPLATE data structures:
that indicates how to organize the logged data

(_traceabiity_nc_function)— ':E_’r?uiitions

— N
f— &6-\::_3:;.
= * WF
Shop-floor Automation of
- k standard
Traceability Reguirements
= +Bq Sl structure
Traceability Data Streuture data logs
Standardization E
Option A

Updated AP-238 with:
Traceability_nc_functions are inked
with “nc_variables” that are “IN-FILE"
updated

Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

a. Traceability data is logged in the AP-238 files.
b. Traceability data is logged in separate files but following the
STEP data structures indicated by the nc_functions data models.

2. On-Line data Recording vs Global or Default
Behaviour.

There are also two major options for group | traceability nc_functions
functionality. Both have benefits depending on what is wanted to do.

1. If defined as single value functions: CNC executes the function, logs a
value and continues execution

2. If defined as global/default process: CNC executes the function and
logs values for the specified requirements during all the machining
process.

See next figure: alternatives can do the same and implementation details for
both can be similar, it is just a “matter” of which approach will be preferred and
more useful.

Single Value Global (Workplan Scope)
nec_functions approach ne_functions approach
to get_time fo get_time
AP238 Executable Tree AP238 Executable Tree
= B 19 WP - finish = e d19:WP - finish
P iddd s FM - dizplay mezzage P iddd:FM - dizplay meszage
1 Cle id953 0 PN digplay message 1 Ju— P id95: FM - dizplay meszage
2 b 118 WS s e 31 WS H-pe id118 WS -k line 31 W5 1
¥ idET1T PN - display mezsage P idEF1T FM > dizplay message
3 P 6747 FM -x display message P idEF47 FM -» display message
4 H-b dETET WS < line 8741 WS 2 H-b dEFET WS - line BT WS 2
* o 322 PN > display message W id9122 0 FM - display meszage
5 Lol id3058 0 Y - dizplay meszage P id9058 : FM > display message
6 Tl 031720 WS - line 9347 W5 3 +- P id3072 0 WS -k line 98T WS 3
P id11002::FM -» displar message P id11002FM - display message
T Lo 11038 0 FN - digplay message I id11035FM - dizplav message
3 b 11052 WS < line 11906 WS 4 H-p id11052 WS - line 11906 4/5 4
b 13807 LFH - displaw nicssage I 10807 L FM -r display nicssage
9 ol id13862 0 FH - display message P id13862 FM - display message
10 Wk dI3ETE WE 1 ling 13707 WS B 1 b idIZEFE 2WE line 13707 WE B
P id21097 FM <> display message W id230597 o FM -» dizplay message
11 el id23102 0 FM - displar meszage b d202:FM - displar message
12 -l 23107 WS - line 16397 WE 6 b id2N07 WS - line 16397 W5 6B
13 e d2IBE2 WS line 174268005 7 3 d2IBEZ WE - line 17425055 7
> 21157 FM progrem stop P id21167 2 FM - progrem stop

Seeing both alternatives, the following consequences can be “extracted”. With
single value functions, complexity goes into the AP-238 executable structure,
(does this have implications on the machining speed also or this will be CNC
architecture dependant?). With Global nc_functions (workplan scope)
complexity goes on the “process concurrency” that has to track the workplan
progress and log execution times ... (it has been already some previous
discussion whether for Ap-238 Ed2, concurrency z ...

Universidad de Vigo

Julio Garrido Campos (jgarri@uvigo.es)

3. Traceability Data Requirements and nc_functions

Some are covered by group Il functions.

Ap-238 Edition Il Objectives: Implementable Traceability ?

(AUTOMATION)
STANDARDIZATION

High Level capture thr?rUQh AP-ZBB CAD/CAM capture Shop-Floor
Enterprise-Level administrative HETEE Level shop-floor Level
(MES,ERP, Data AP-238 knowledge
Process Planning at configuration
el Level |
Traceability 5
. Requirements
¥ Automation v
shop floor
customer | Nfeeopeeas requirements,
X a3 o o o
requirements, 3 p 30 optimization,
administrative data, 5 c 1= = adaptative,
5 =)
process planning, -h <a compensation,
scheduling g ® g
s Ap-238
[T > = A > P
I'. |!|I. — = ﬁ = + -
requirements flow traceability
4 group ll
H ne_functions
ac g epintien
shoop-floor g monitoring)
level
machining process
In-process
data collection
groupl|
capture nc_functions
: off-process 77
shopfloor @ p
Administrative Knowledge§
& process Data yYVveywy
logged data flow log format ?
f 7l éE ‘ ‘ @/\ P P
L ¥y = = 4
e
AP-238 or
STEP-based
Format

Possible GROUP | data requisites:

Administrative data such us:

(DATA FORMAT)
STANDARDIZATION

through AP-238
nc_functions

- Execution times (part and workingstep ...)
- Machine Efficiency (Total run Time vs. Cutting Time ...)
- Consumed Power, Current ... (per Workingstep, per part)*

- Machine System Data

- Machine Event Monitoring (Alarms, Warnings, Stops, Program Interrupts...)
- Operator Data, Tool Data, Material Data ...

Process Knowkedge Data
- Time at one execution points
- NC Data at execution points
o0 Axis Position

o Sensor Data (NCregister, Feed, Speed, Power, Current ...)

Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

4. STEP by STEP GROUP [functions.

Goup I, nc_function and get a single actual nc_value, this functions interact
directly with the nc unit, and get values from it (internal memory, register,
coupled sensors. These are not globlally or default defined functions. They
present more flexibility to collect punctual data, but they add complexity to the
configuration process...

2.1 get_time*

The nc_function name can be changed into get_time_and_date: the purpose
of this function will be to collect the actual controller date and time value. Also a
get_workingstep_execution_times* function to collect time interval
(workingstep/toolpath execution times) could be added as a traceability group Il
function or as a GLOBAL group | function.

Possible data structures for this function:
a. If data will be recorded in AP-238,
The first option is an approach similar to bounded curve (no nc_variables), and

the “get date_and_time” nc_function is linked to a date_time structure as
defined by module 10303-1010.

its_time
—C‘r get_date_and_time H date_time {10303-1010-arm) ::l

The second option is similar, but redefining the linked data structures as a
set/array of nc_variable (real numeric type). A “date_time_format_select” has
been defined to cover the case of returning and absolute “non-formatted” time
value (like raw values in pc internal date counters), or a “formatted _date” value.

its_time

—q get_date_and_time H nc_date_time)

FoTrEswsesTeawEawy
E inc_date_ : =] raw_date
and_time
ol [
its_month o
---‘-------------{4,??,nc_~.'ar|able _)
its_day P
sssssssssssssmssesnad ! i
its_year : i i
formatted ..._.}I.‘?'? i 1
_date its_hour i .
e L L L L L L LTI] i
its_minute :
— K

Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

2.2
2.3
2.4
2.5
2.6
2.7

b. If data is not recorded in AP-238 and will be logged into a separate
file.

It will be a task of the HMI/POST to take the “actions” to include in the log file
the necessary data to link the AP-238 nc_function and the resulting value, for
example, including nc_function entity id. The defined data structures (as shown
in the first option), can be used to indicate the HMI/POST how to structure the
logged data. So the information should be modelled somehow as follows:

measured_for [tz entity_id)
— '—C(_ (ABS) nc_function _)
o
99 its_time

date_and_time

'—C(nc_date_time _-)

In this case, it will be alsonecessary if not done by default, to write a header in
the log file the linking information with the AP-238 file for which the log file
will be written ...

get_x_location_data,
get_y location_data,
get_z location_data,
get_i_axis_data,
get j axis_data,
get_k_axis_data.

These six functions can be grouped under a more generic get_nc_axis_data,
the purpose of this function will be to collect the actual controller nc_data. A
mandatory string will be used to identify what axis data to collect: “X”, “Y”, “Z”,
“, “J”, “K” or any valid combination of them, as “XYZ" ... (the G-code conversor
will break this string to find which variables/data it include in code to be
collected). The alternatives for data definition are similar as those presented for
the get_date_and_time_function.

Possible data structures for this function:
a. If data will be recorded in AP-238,
The first option is an approach similar to bounded curve (no nc_variables), and

the “get_nc_axis_data” is linked to a axis_data structure of measure_with_unit
values (to hold length or angle measures).

—q get_nc_axis_data |
i | axis_id
, STRING
i axis_data L[1:6]

----------------- { measure_with_unit :]

Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

The second option is similar, but redefining the linked data structures as a
set/array of nc_variable (real numeric type). A “nc_axis_position_data” has been
defined. Maybe it will be possible to add extra “static*” axis information ...

(I mean static, because it is supposed that these nc functions, as group I, will be
used when axis motion is stopped)

—q get_nc_axis_data |
axis_id
= STRING | |
axis_data - -
—(nc_ams_poswlon_dataj

__x___al:_u_srz.r_afq:ri_“{ 4,77, nc_variable)
| yads valve T
nc_axis_ z_axis_value : ; ; ;
el (XTI
J_axis_value E .
haxs valve ...

b. If data is not recorded in AP-238 and will be logged into separate a
file.

It will be a task of the HMI/POST to take the necessary “actions” to include in
the log file the necessary data to link the AP-238 nc_function and the resulting
value, for example, including in the value the nc_function entity id and the
meaning of the recorded values.

measured_for 0 sntitid)
onoed —C({ABS) nc_function j
0gg

nc_axis_data axis_data L[1:6] { ra—)
--mmmm---------{ measure_with_unit

c. If we do not want to group these functions and follow the approach of
six different nc_functions, options will be similar (as shown below for
get_x_position_location)

its_value

—(get_x position_data |- -~ o 4,77,nc_variable)
axis_data

—q get_x_position_data | ----- O(measure_wim_unit :1

Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

2.8 get_sensor_data*

The nc_function name can be “split” or not into get_sensor_data: the purpose
of this function will be to collect nc sensor data (it could be through internal
nc_register, as long as they are REAL values), and get_nc_register_data to
collect data form other internal nc_register not expressed as real/numeric data

types.

a. If data will be recorded in AP-238,

The proposed option is similar for both functions, but for the “get_nc_register”
function it will be necessary to define a STRING variable, following a similar
approach as it was used to define the real type nc_variable. A “nc_register” type
has been defined as a select of nc_real variable (wich is a nc_variable, and a
defined nc_string variable).

—q get_sensor_data |
[z Il

sensor_value

(4, 77, nc_variable)

—q get_nc_register_data |
| register

STRING I

register_value

L nc_register _)

nc_variable™,

'3—(4,772, 38, 38))
. (" 46,44,label)
nc_real _ its_name

variable [__ _ __ __ .

initial_wvalue ¥,

. { 46,44, label)
O nc_string its_name
e [sRiNG_T]
-------- .
s value ~ CLLSTRING |

d. If data is not recorded in AP-238 and will be logged into separate a
file.

It will be a task of the HMI/POST to take the necessary “actions” to include in
the log file the necessary data to link the AP-238 nc_function and the resulting
value, for example, including in the log before the value the nc_function entity
id and the meaning of the recorded values. An optional attribute for this function
could be a STRING name indicating the file name to write the result.

measured_for 0t entieid)
logged —O({AB5) nc_function :J
nc_wvalue nc data
----_------------(ne_register :}

Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

5.”GLOBAL” GROUP I functions.

(Global = execute nc_function and get a series of values during workplan
execution.)

The first question with this approach is where to insert these functions in the
AP-238 executbale structure: At the beginning ?, if not inserted at the
beginning, what happens ?.

2.9get_cnc_system_data

The “get_machine_id” nc_function name can be changed into
get_cnc_system_data: the purpose of this function will be to collect the actual
controller administrative data. It has been placed here because this function can
be used for example collect data about the total program execution time or the
total cutting cycle time, there are two possible approaches:

1. The function is placed always at the end of the workplan (before the
program stops): At the end of the program data is dumped into the log
file the predefined machine data.

2. The function is placed anywhere, but logging is delayed to the
program end, so some sort of FLAGS have to be programmed
internally to indicate that at the end of the program data is going to be
logged...

—q get_nc_systermn_data J

nc_machine_data -
| = = (nc_machine_data _}

machine_id 7

---{ 4 77, nc_register _)
nck version i

=l

nc_mac hine program_name

_data o]
| machine operation time __;
machine cutting time

other administrative

data to be decided

(data inside AP-238)

Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

measured for (its entity_id)

logged —CO((ABS)workplan)
nc_machine administrative_data machine_id 7
_data O e | STRING I
. seseiesiieiciiiicceoco) STRING I
nc_rnachine program_name
data smmmmmmmm e ee e oo STRING I
machine operation time
machine cutting time
e+ I[ETHI
other administrative
.. datatobedecided

(data outside Ap-238 file)

2.9 get_operator_data

The “get_operator_id” nc_function name can be changed into
get_operator_data. The purpose of this function will be to collect operator data
during workplan execution. It is placed here IF its execution can be considered
as workingstep asynchronous, meaning that operator changes can happen
during workingstep execution.

Also, this function, the same as the following ones (for materials, events and
tool_data) maybe will need to interact with other “inputs” not coming form the
NC as seen in the figure below, so as operator logging is controlled but other
systems or external databases, is it this automation inside Ap-238 scope (AP-
238 CNC architecture)?

S
SN

AP-238
nc_functions

Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

Another important observation for these functions is that “asynchronous
events” such as operator log-in/log-out, and machine events are that their
essential data is the “event time”, so to connect this data with CNC
machinig traceability (workingstep/features), it will be needed a complete
trace of workingsteo execution time.

For example, if we have the logging time for operators working during a
workpiece machining, and we know workingstep 4 was wrong, but we
don’t know when WS4 started and ended, we have no way to know which
operator was working during WS4. A possible alternative would be to add
WS information to the operator log, but can we guarantee the operator
database, or logging system (maybe a remote/distributed one) knows
which WS is in execution?

1. The function is placed always at the end of the workplan (before the
program stops): At the end of the program data is dumped into the log
file the predefined machine data.

2. The function is placed anywhere, but logging is delayed to the
program end, so some sort of FLAGS have to be programmed
internally to indicate that at the end of the program operator data must
be logged...

—q get_operator_data |

operators L[1.7
= 0.1 { nc_operator_data)

operator_id -
----------------{ 4 77, nc_variable)

Nc_operator | jog_in time .
data --?-------------{ 4, 77, nc_variable)

log_out time -
By L it (4 77, nc_variable)

(data inside AP-238)

measured_for s entity_je)
logged O (ABS) workplan
ne_operator nc_operator data [] = [1TTTtTTTTYYYeee4y identificati
X L 1t | _identification
S — operator_id 1 { opertor : . (] STRING I
‘:Lselecr i.—-—(fu” identification o and_organization)
nc_operator
data int -
2 log_infime (" date_time (10303-1010-arm))
| log_out time _ -((date_time (10303-1010-arm))

(data outised AP-238)

-10 -

Universidad de Vigo
Julio Garrido Campos (jgarri@uvigo.es)

2.10 get_raw_materials

The purpose of this function will be to collect raw_materials data employed for
part machining.

It is allowed to have more than one stock piece ?

Should we consider coolant_types and other resources as raw materials?

—C.| get_raw_materials |

1?7 material_identifer L[0:7]
material_identifier

{_ nc_string_variable -:]

.
ne_string its_|
variable S Tl STRING I

(data inside AP-238)

measured_for fits ertity_id)

ABS kpl
s [i)
raw_materials used_raw_materails o .

- - = stock_material_identifier pse k]
_data L e ~ STRING I

raw_materials
(stock 7)

- (data outside Ap-238)
2.13 get_tool_data*

2.14 get_execution_times

2.15 get_machine_events

6. LAST QUESTION

Do we need an input nc function ? (similar to display message but to
force the operator to enter some data ? 2 CNC architecture dependant

(HMD)

-11 -

